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Kinetics of nucleation and halt-in-growth

processes in a thin layer
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The methods of determining the kinetic exponents in the equation, dX/dVex = (1− X)2−γ ,
used for nucleation and halt-in-growth processes where X is the transformed fraction, Vex

the KJMA extended volume fraction which is related to time t, and γ is the overlap factor
which accounts for the overlap between a crystallite and a phantom crystallite, are
presented. The applications of the Kolmogorov–Johnson–Mehl–Avrami plot (γ = 1) and the
Austin–Rickett plot (γ = 0) to this process are inappropriate, because the overlap factor is
0 < γ < 1. The impingement exponent 2-γ and the time exponent are determined from the
linear relation of In{[(1− X)γ−1 − 1]/(1− γ )} versus In t. From the value of γ , the crystal
shape and growth dimension can be estimated by referring to the mathematical value of γ .
The methods of evaluating the activation energy, Q, are presented using the Arrhenius
relation. The value of Q is not directly related to the overlap factor γ ; however, γ appears as
a constant term in the expression for Q. C© 1999 Kluwer Academic Publishers

1. Introduction
Various isothermal transformations have been de-
scribed by the Kolmogorov–Johnson–Mehl–Avrami
(KJMA) equation [1–5] and the Austin–Rickett (AR)
equation [6]. In these equations, the transformed frac-
tion, X, at timet is generally expressed as

dX

dt
= Btn−1(1− X)i (1)

whereB is a model-dependent factor,n is a time ex-
ponent andi is unity (KJMA) or 2 (AR). The factor
(1− X)i is referred to as the impingement factor, and is
commonly used to correct for the effects of such factors
as the impingement of crystallites and the depletion of
the untransformed matrix in solute content [7, 8].

The time exponent,n, is calculated from the experi-
mental data ofX using the KJMA equation or the AR
equation. The activation energy,Q, is also evaluated
using the Arrhenius relation. Furthermore, these equa-
tions have been employed in studies of non-isothermal
transformation kinetics [9–11]. Although a large num-
ber of studies have been made on the evaluation ofn
and Q using the KJMA equation (i = 1) and the AR
equation (i = 2), little is known aboutn andQ when
the impingement exponent is 1< i < 2.

Recently, we have noted a limitation of the KJMA
and AR models when the crystal growth stops at a fixed
size [12–15]: in a thin amorphous silicon (a-Si) layer,
the crystal growth stops between two amorphous silicon
oxide interfaces [16, 17]. A similar limitation of silicon
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crystal growth between interfaces has been reported for
the laser-annealed a-Si/amorphous silicon nitride mul-
tilayered structure [18, 19]. This structure exhibits vis-
ible photoluminescence from silicon nanocrystals and
could be used in optoelectric applications.

When the crystal growth stops at a fixed size, phan-
tom crystallites, which are grown from phantom nuclei
[4], partly protrude beyond the crystallites. This causes
a serious problem in that the transformed fraction is
overestimated by the protruding phantom crystallites.
Then, phantom crystallites are shrunk to an effective
size to correct the transformed fraction. In our previous
paper [14], a mathematical model was successfully used
to deal with the effective size using the factorγ which
accounts for the overlap between a phantom crystallite
and a crystallite. This model leads to the equation

dX

dVex
= (1− X)2−γ (2)

whereVex is the KJMA extended volume fraction which
can be related to time. An equation of this form has long
been known as the phenomenological equation for non-
random impingement [7, 20].

The impingement exponent is expressed as 1<

(2− γ )< 2 becauseγ ranges from 1–0. The explicit
value of γ can be derived from the crystal shape
and the growth dimension [12], for example,γ = 3/4
for needle-shaped crystallites in one dimension,γ =
1−33/2/4π for circular crystallites in two dimensions,
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and γ = 15/32 for spherical crystallites in three di-
mensions. The transformation kinetics for the halt-in-
growth, however, has never been reported.

In this paper, we focus on the effect of the overlap
factorγ on the evaluation of the time exponent,n, and
the activation energyQ.

2. Exponents in the present kinetic equation
In this section, the time exponent,n, and the impinge-
ment exponent, (2-γ ), in the present kinetic equation
are evaluated.

We assume the following nucleation and growth pro-
cess [13].

1. Nucleation sites are randomly formed in space at
a rate ofN(t) per unit volume.

2. Nuclei grow instantaneously to a fixed sizek and
then stop growing.

This process is referred to as the “present process”.

2.1. T ime exponent in the KJMA plot
The time exponent,n, is evaluated from the KJMA plot
to clarify the effect of the overlap factor,γ , on the
KJMA plot. From the present nucleation and growth as-
sumption, the KJMA extended volume fraction is given
by

Vex = k
∫ t

0
N(t ′) dt ′ (3)

If the KJMA model (γ = 1) were applied to the
present process, the transformed fraction,XKJMA,
would be expressed as

XKJMA = 1− exp(−Vex) (4)

The time exponent,n, in the KJMA model at a constant
nucleation rate,N(t) = N, is then given by unity, be-
cause a plot of ln[−ln(1− XKJMA)] versus lnt results
in a slope of unity. The KJMA model then yieldsn= 1
with γ = 1.

From Equations 2 and 3, the transformed fraction in
the present model is given by

X = 1− [1+ (1− γ )Vex]
1/(γ−1) (5)

Using the KJMA plot, the time exponent,n, is expressed
as

n = d ln[−ln(1− X)]

d lnVex

=
[

(1− γ )Vex

ln[1+ (1− γ )Vex]

][
1

1+ (1− γ )Vex

]
(6)

Thusn is a function of only the product (1− γ )Vex.
At the beginning of the transformation (Vex→ 0), n is
unity becausen is approximated to 1/[1+ (1− γ )Vex]
for Vex¿ 1. Whenγ approaches unity (Equation 6 is

Figure 1 Plots of ln[−ln(1 − X)] versus lnt at a constant nuclea-
tion rate N in Equation 5: (1) the KJMA model (γ = 1); (2) the
present model for needle-shaped crystallites in one dimension
(γ = 3/4); (3) the present model for circular crystallites in two dimen-
sions (γ = 1−33/2/4π ); (4) the present model for spherical crystallites
in three dimensions (γ = 15/32); (5) the AR model (γ = 0).

not defined atγ = 1),n tends to unity. Hence, the KJMA
model is recovered at the beginning of the transforma-
tion (Vex→ 0) or at the KJMA approximation (γ→ 1).

Whenγ is zero, Equation 5 reduces to

XAR = 1− 1

1+ Vex
(7)

This is identical to the AR solution; the KJMA plot
for γ = 0 is equivalent to the KJMA plot of the AR
solution.

Plots of ln[−ln(1−X)] versus lnt at a constant nucle-
ation rateN in Equation 5 are shown in Fig. 1 for three
crystallites [12]: needle-shaped crystallites in one di-
mension (γ = 3/4); circular crystallites in two dimen-
sions (γ = 1− 33/2/4π ); and spherical crystallites in
three dimensions (γ = 15/32). The straight line is the
result for the KJMA model (γ = 1) and the lower curve
is the result for the AR model (γ = 0). The slope of
ln[−ln(1− X)] versus lnt decreases with decreasingγ
and increasingt .

The values ofn at a constant nucleation rate in Equa-
tion 6 are shown in Fig. 2 for the three crystallites. The
upper line,n= 1, is the result for the KJMA model
(γ = 1) and the lower curve is the result for the AR
model (γ = 0). It is clear that the application of the
KJMA plot to the present model is inappropriate, ex-
cept at the beginning of the transformation.

Before turning to a discussion of the evaluation of
the present kinetic exponents, a few remarks should be
made concerning the AR plot. If the AR model (γ = 0)
were applied, the transformed fraction,XAR, would be
expressed by Equation 7. At a constant nucleation rate,
ln[XAR/(1−XAR)] versus lnt results in a slope of unity.
The AR model then yieldsn = 1 with γ = 0. In other
words, a plot of ln[X/(1 − X)] versus lnt does not
result in a straight line in the present model because
0< γ < 1.
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Figure 2 Values ofn in the KJMA plot in Fig. 1: (1) the KJMA model
(γ = 1); (2) the needle-shaped crystallites (γ = 3/4); (3) the circular
crystallites (γ = 1−33/2/4π ); (4) the spherical crystallites (γ = 15/32);
(5) the AR model (γ = 0).

2.2. Evaluation of the time exponent and
the overlap factor

The time exponent,n, and the overlap factor,γ , are eval-
uated without the KJMA plot or the AR plot. Equation 5
is rewritten as

D(γ ) = ln

[
(1− X)γ−1− 1

1− γ

]
(8)

= ln Vex (9)

When a suitable value ofγ is adopted, a plot ofD(γ )
versus lnVex leads to a straight line. At a constant nu-
cleation rate,N, Equation 9 reduces to a form similar
to that suggested by Lee and Kim [8]

D(γ ) = ln t + ln(kN) (10)

Hence, the value ofγ in the present model can be ob-
tained by setting a straight line with a slope of unity
(n = 1).

Plots ofD(γ ) in Equation 8 versus lnt are shown in
Fig. 3 for the three crystallites. In this figure, the straight
line is set for the circular crystallites (γ = 1−33/2/4π ).
The other curves thus show the deviations from the
straight line on setting different values (γ = 3/4 and
15/32); the deviations become more obvious at the final
stage of the transformation. The upper curve shows the
result for the AR model (γ = 0) and the lower curve is
for the KJMA model (γ = 1). As can be seen in Fig. 3,
positive deviations occur when lower values ofγ are
adopted; in contrast, negative deviations occur when
higher values ofγ are adopted [8].

We can thus estimate the crystal shape and the growth
dimension from the value ofγ because the mathemat-
ical value ofγ has already been obtained for several
important cases [12].

3. Activation energy of nucleation
In the simplest form, the nucleation rate,N, is only a
function of the temperature. UsuallyN is assumed to

Figure 3 Plots ofD(γ ) in Equation 8 versus lnt at a constant nucleation
rateN: (1) the KJMA model (γ = 1); (2) the needle-shaped crystallites
(γ = 3/4); (3) the circular crystallites (γ = 1−33/2/4π ); (4) the spherical
crystallites (γ = 15/32); (5) the AR model (γ = 0). The straight line
(curve 3) is set for the circular crystallites (γ = 1−33/2/4π ); the other
curves thus show the deviations from the straight line on setting different
γ values.

obey the Arrhenius relation

N(T) = N0 exp

(
− Q

RT

)
(11)

whereN0 is the pre-exponential factor,Q the activa-
tion energy of nucleation,R the gas constant, andT
the absolute temperature. Under isothermal conditions,
the temperature,T , is independent of time. The kinetic
equation is then expressed as

dX

dt
= kN0(1− X)2−γ exp

(
− Q

RT

)
(12)

If the KJMA equation (γ = 1) were applied to the
present process, the activation energy,Q, would be ex-
pressed as [20]

Q(t1)

R
= −

{
d ln[−ln(1− X)]

d(1/T)

}
t1

(13)

If the AR equation (γ = 0) were applied,Q would be
expressed as [20]

Q(t1)

R
= −

{
d ln[X/(1− X)]

d(1/T)

}
t1

(14)

In the present equation (0<γ <1), the activation en-
ergy,Q, can be expressed as

Q(t1)

R
= −

{
d ln[(1− X)γ−1− 1]

d(1/T)

}
t1

(15)

Thus, the activation energy can be obtained from the
values of the overlap factorγ andX taken for reaching
a fixed timet1, measured at various temperatures. Here
Equation 15 agrees with the AR equation (Equation 14)
by settingγ = 0. Equation 15 does not agree with the
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KJMA equation (Equation 13) in the limitγ → 1 be-
cause Equation 15 is not defined atγ = 1. Therefore,
Equation 15 can be applied in the region (0≤ γ < 1).

Hillert [20] proposed a more fundamental equation
using a fixed transformed fractionX1. From Equa-
tion 12 the present kinetic equation is rewritten as

ln

(
dX

dt

)
X1

= ln(kN0)− Q∗

RT
+ (2− γ ) ln(1− X1)

(16)

A plot of ln(dX/dt)X1 versus 1/T then yields a straight
line with a slope of−Q∗/R. As can be seen from Equa-
tion 16, the value ofQ∗ is not directly related toγ ;
however,γ appears as a constant term in Equation 16.

The integration of Equation 12 is usually used [8, 20]
when the measurement ofX results in large uncertain-
ties in evaluating (dX/dt)X1. At a fixed transformed
fraction,X1, we obtain

ln(t)X1 =
Q(X1)

RT
+ ln A(X1) (17)

where

A(X1) = (1− X1)γ−1− 1

(1− γ )kN0
(18)

A plot of ln(t)X1 versus 1/T produces a straight line
with a slope ofQ/R.

The activation energy,Q∗, in Equation 16 is an in-
stantaneous value atX1. In contrast,Q in Equation 17
is the mean value ofQ∗ from the beginning of the trans-
formation toX1. It has been reported [8, 20] that the
two activation energiesQ∗ and Q are identical when
they are independent of the transformed fraction,X.

4. Conclusion
Methods for determining the kinetic exponents in the
equation used for the nucleation and halt-in-growth
process, have been presented. This equation is given
by dX/dVex= (1− X)2−γ , whereX is the transformed
fraction, Vex is the KJMA extended volume fraction,
andγ is the overlap factor to account for the proba-
bility of the overlap between a crystallite and a phan-
tom crystallite. The applications of the KJMA plot

(γ = 1, n = 1) and the AR plot (γ = 0, n = 1) are
inappropriate, because the overlap factor is 0< γ < 1
in the present process.

The linear relation of ln{[(1− X)γ−1− 1]/(1− γ )}
versus lnt has been used to determine the impingement
exponent (2− γ ) and the time exponent (n = 1). Devi-
ations from the straight line on setting different values
of γ become more obvious at the final stage of the trans-
formation. The crystal shape and growth dimension can
thus be estimated by referring to the mathematical value
of γ .

The methods of evaluating the activation energy,Q,
have been presented using the Arrhenius relation. The
value ofQ is not directly related toγ ; however,γ ap-
pears as a constant term in the expression forQ.
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